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ABSTRACT

An increase in the planetary albedo of the earth—atmosphere system by only 10% can decrease the equi-
librium surface temperature to that of the last ice age. Nevertheless, albedo biases of 10% or greater would
be introduced into large regions of current climate models if clouds were given their observed liquid water
amounts, because of the treatment of clouds as plane parallel. Past work has addressed the effect of cloud
shape on albedo; here the focus is on the within-cloud variability of the vertically integrated liquid water.
The main result is an estimate of the ‘‘plane-parallel albedo bias’* using the ‘‘independent pixel approxi-
mation,”’ which ignores net horizontal photon transport, from a simple fractal model of marine stratocumulus
clouds that ignores the cloud shape. The use of the independent pixel approximation in this context will be
justified in a separate Monte Carlo study.

The focus on marine stratocumulus clouds is due to their important role in cloud radiative forcing and also
that, of the wide variety of earth’s cloud types, they are most nearly plane parallel, so that they have the least
albedo bias. The fractal model employed here reproduces both the probability distribution and the wavenumber
spectrum of the stratocumulus liquid water path, as observed during the First ISCCP Regional Experiment
(FIRE). The mode! distributes the liquid water by a cascade process, related to the upscale cascade of energy
transferred from the cloud thickness scale to the mesoscale by approximately 2D motions. For simplicity, the
cloud microphysical parameters are assumed homogeneous, as is the geometrical cloud thickness; and the meso-
scale-averaged vertical optical thickness is kept fixed at each step of the cascade. A single new fractal parameter,
0 = f= 1, is introduced and determined empirically by the variance of the logarithm of the vertically integrated
liquid water. In the case of conservative scattering, the authors are able to estimate the albedo bias analytically
as a function of the fractal parameter f, mean vertical optical thickness T,, and sun angle #. Typical observed
values are f'= 0.5, 7, = 15, and 8 = 60°, which give an absolute bias of 0.09, or a relative bias equal to 15%
of the plane-parallel albedo of 0.60. The reduced reflectivity of fractal stratocumulus clouds is approximately
given by the plane-paraliel reflectivity evaluated at a reduced ‘‘effective optical thickness,”” which when f
= 0.51s T4 = 10.

Study of the diurnal cycle of stratocumulus liquid water during FIRE leads to a key unexpected result; the
plane-parallel albedo bias is largest when the cloud fraction reaches 100%, that is, when any bias associated
with the cloud fraction vanishes. This is primarily due to the variability increase with cloud fraction. Thus, the
within-~cloud fractal structure of stratocumulus has a more significant impact on estimates of its mesoscale-
average albedo than does the cloud fraction.
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1. Introduction

Many theoretical studies have shown the sensitivity
of cloud radiative properties to their spatial structure,
ranging from the seminal work of McKee and Cox
(1974) and Stephens (1976) to more recent work by
Harshvardan and Weinman (1982), Welch and Wie-
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licki (1985), and others. As Harshvardan and Randall
{1985) have pointed out, current general circulation
models, because of their reliance on plane-parallel as-
sumptions, are in the embarrassing situation of having
to use unrealistically small liquid water amounts to pro-
duce realistic albedos. Stephens (1985) has empha-
sized that the mean albedo is not a function of mean
liquid water alone, but also depends upon its spatial
distribution, and has provided a general formalism to
account for spatial inhomogeneity (Stephens 1988a,b).
Lovejoy (1982) suggested that cloud spatial distribu-
tions may be modeled by self-similar fractals and, with
Schertzer and other collaborators, has more recently
generalized to multifractals [ see, for example, Lovejoy
et al. (1990) and Schertzer and Lovejoy (1987), and
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references therein]. Cahalan (1989) employed a sim-
ple multifractal model to show that the area-averaged
albedo is insensitive to scales smaller than a photon
mean free path, typically on the order of 100 m. Rhys
and Waldvogel (1986) and others have shown that
cloud fractal dimensions undergo abrupt changes at
certain scales, and Cahalan and Joseph (1989) found
that these characteristic scales depend on cloud type
and brightness threshold.

Two cloud types that have been the focus of partic-
ular attention recently are cirrus and marine stratocu-
mulus. Conventional wisdom is that cirrus, being high
and optically thin, act mainly to decrease the outgoing
longwave radiation and thus have a net heating effect,
while marine stratocumulus, being low and optically
thicker, primarily cool the climate. However, to quan-
tify these two effects will require careful estimates of
the thermal emissivity and reflectivity of both cirrus
and marine stratocumulus clouds. A central result of
the Earth Radiation Budget Experiment is that net
cloud radiative forcing is maximum at the locations and
seasons of extensive marine stratocumulus, and is dom-
inated by the shortwave reflection (Harrison et al.
1990; Ramanathan et al. 1989; see also Hartmann and
Short 1980). Reflection estimates are affected both by
the microstructure of cloud fields (drop sizes, absorp-
tion, etc.) and by their macrostructure (cloud fraction,
cloud variability, etc.). Here we focus upon the macro-
structure of marine stratocumulus, and its impact on
reflectivity.

Marine stratocumulus are perhaps the closest of any
cloud type to plane parallel. They are typically 200—
400 m thick, being confined in the vertical between the
lifting condensation level and the strong subtropical in-
version, while covering horizontal areas 1000 km or
more in diameter. Their cloud fractions often approach
100% over large regions of subtropical eastern ocean
basins, particularly in summer. The question naturally
arises: How accurate are plane-parallel estimates of
stratocumulus reflectivity, which form the basis of ap-
proximations used in current general circulation models
(GCMs), and are also fundamental to algorithms used
in satellite retrievals of cloud properties? These are
really two distinct questions, since GCMs and satellite
retrievals operate at very different spatial resolutions.
Retrievals typically assume that the brightness of each
1-km pixel is a function only of the properties within
that pixel’s field of view. We shall make a similar as-
sumption in this paper, and justify it for 100% marine
stratocumulus in a separate Monte Carlo study. GCMs,
on the other hand, try to determine at each time step
the mean properties over a field of view 100 km or
more in diameter and artificially. compensate for the
effect of subgrid-scale variations. The main purpose of
this paper is to estimate the error GCMs make in treat-
ing clouds as uniform over the mesoscale.

The plane-parallel albedo biases estimated in this pa-
per are based on a fractal model that reproduces the
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wavenumber spectrum and probability distribution of
integrated liquid water inferred from observations of
stratocumulus clouds observed in the First International
Satellite Cloud Climatology Regional Field Experi-
ment (FIRE) in 1987. Several results do not depend on
the specific fractal model or the particular observations,
but are more generally true. First, the area-average al-
bedo of an inhomogeneous cloud field is less than that
of a uniform cloud having the same microphysical pa-
rameters and the same total liquid water. Thus, the
plane-parallel albedo bias is always positive for con-
servative scattering in the IPA. Second, the albedo bias
is more sensitive to the within-cloud variance of the
cloud liquid water than it is to the mean. Third, the
within-cloud variance becomes increasingly important
as the cloud fraction increases. For stratocumulus, the
impact of within-cloud variance is enhanced by the fact
that the variance increases with cloud fraction, and in
fact the bias is maximum when the cloud fraction
reaches 100%.

The outline of the paper is as follows. The following
section provides some background—it first discusses
the sensitivity of the global energy balance to changes
in the global albedo and then describes the relevant
observations of marine stratocumulus clouds. Section
3 introduces a simple ‘‘bounded cascade’” model of
stratocumulus cloud optical depth and some related as-
sumptions, and gives a first rough estimate of the al-
bedo bias. This bias is found to be significant when
model parameters are estimated from observations.
Section 4 describes the dependence of the bias on mean
optical depth, sun angle, and fractal variability for the
case of conservative scattering in overcast stratocu-
mulus, and section 5 generalizes these results to include
absorption. Section 6 examines the diurnal cycle of
cloud fraction and within-cloud variability and shows
that the within-cloud variability has more impact on the
diurnal cycle of the albedo bias than does cloud frac-
tion. Section 7 summarizes the results and discusses
possible extensions. Finally, appendix A provides a
simple derivation of the k ~*> wavenumber spectrum of
the bounded cascade model; appendix B outlines der-
ivations of the model’s statistical moments; appendix
C gives simple upper and lower bounds for cloud op-
tical thicknesses in the bounded cascade model; and
appendix D describes a simple analytic reflection func-
tion for conservative scattering.

2. Preliminaries ‘
a. Global sensitivity to cloud albedo changes

Before attempting to estimate the bias associated
with plane-parallel albedo estimates, let us first con-
sider what impact a given albedo bias might have upon
the large-scale climate. [For related discussions, see,
e.g., Wetherald and Manabe (1980) and Cahalan and
Wiscombe (1993).] To that end, consider the global
energy balance of the earth:
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(1 — a)(solar constant)/4 = 0TS, (2.1)

where « is the global average albedo, o is the Stefan—
Boltzmann constant, and 7. is the mean radiative tem-
perature of the earth. Here T, is determined by an av-
erage over cloud-free regions, where the radiative tem-
perature approaches that of the surface, and cloudy
regions, where the radiative temperature can be as low
as that of the tropopause.

One of the difficulties in determining the effect of
clouds on climate is that an increase in cloud amount
increases the albedo but also decreases T.i and thus
decreases both sides of the above energy balance,
which can lead to either warming or cooling at the sur-
face. In this paper we focus on stratocumulus clouds,
which have been shown to be the major contributor to
net cloud radiative forcing. They have low cloud tops
and thus do not significantly decrease T,i. Thus, they
act mainly through their albedo.

Several empirical studies have shown that for
monthly or annual averages, the right-hand side of
(2.1) may be parameterized in terms of the equilibrium
surface temperature as follows:

oT & = 208 + 2T,, (2.2)

where the surface temperature 7 is given in degrees
Celsius, and the result is in watts per square meter ( see,
e.g., Short et al. 1984). Consider now a small change
in the albedo, A«a. From (2.1) and (2.2), with the cur-
rent solar constant of 1360 W m~2 and global albedo
of about 0.3, we find

AT, = —0.5°C ( 100 A“) . (2.3)

[44
In other words, for each 1% decrease in the mean al-
bedo (i.e., an absolute albedo bias of about 0.003), the
equilibrium surface temperature warms by 0.5°C. A
10% albedo drop, from 0.30 to 0.27, would produce a
global warming equivalent to the 5°C warming expe-
rienced since the last ice age.

Clearly, this means that 10% albedo errors are un-
acceptably large when they extend over climatic time
and space scales. We shall see below that for a given
amount of cloud liquid water, plane-parallel models of
stratocumulus have an absolute albedo bias of ~0.1.
The fractional global coverage of stratocumulus and
other ‘‘low clouds’’ has been estimated at ~25%
(Hartmann et al. 1992). If all such clouds have the 0.1
bias estimated here, the resulting absolute bias in global
albedo is 0.025, which is 8% of the global albedo.
Larger albedo biases are expected for other cloud types,
but these have smaller fractional coverage, and may
also have compensating emissivity biases. GCMs avoid
the large errors in regional surface temperature or hor-
izontal heat flux implied by such plane-parallel albedo
biases by either adjusting the albedo directly, thus ef-
fectively decoupling the cloud liquid from the cloud
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radiation, or introducing a compensating negative bias
in the cloud liquid water. In this paper we show that
the compensating liquid water bias is computable from
a “‘reduction factor’’ x that depends on the cloud frac-
tal properties, which undergo diurnal and presumably
also seasonal and geographical variations.

b. Observations of stratocumulus liquid water

Although marine stratocumulus clouds are often
thought to be the premier example of plane-parallel
clouds because of their large horizontal extent (some-
times exceeding 1000 km) and small thickness (less
than 1 km), measurements of their liquid water reveal
a highly turbulent structure, particularly at cloud top
where it most affects the albedo. A study of marine
stratocumulus by Cahalan and Snider (1989), based on
data from the FIRE field program (summarized by Al-
brecht et al. 1988), found that the power spectrum of
vertically integrated liquid water (W), as a function of
wavenumber k, follows a k—>/* power law from the
mesoscale down to the cloud thickness scale of a few
hundred meters. Landsat reflectivity data indicate that
this may change to k=3 at smaller scales, but this has
not yet been confirmed with higher-resolution W data.
Such a change in scaling at a few hundred meters may
be a dynamical effect related to the strong subtropical
inversion, or a purely photon mean free path effect
(Barker and Davies 1992). In any case, theoretical
computatios (Cahalan 1989) show that the photon
field tends to smooth out variations on scales smaller
than the photon mean free path of 100 meters or so.
The scales that matter most to the large-scale albedo
are those larger than a few hundred meters, and there
the £ "> behavior of the liquid water spectrum is well
established. If liquid water were a passive scalar field
in a two-dimensional turbulent flow, this mesoscale
power-law behavior could be associated with the up-
scale cascade of energy from the cloud scale (see, e.g.,
Gage and Nastrom 1986). Some model studies show
that W fluctuates with the vertical velocity (e.g.,
McVean and Nicholls 1988), but whether W can be
treated as effectively ‘‘passive’’ on these scales de-
serves further study. For the purposes of this paper,
however, we shall simply assume the observed power-
law behavior, and focus upon its consequences for the
mesoscale-averaged albedo.

The accuracy of the independent pixel approxima-
tion, introduced in the next section, depends on the
rapid falloff of the power spectrum. Monte Carlo stud-
ies, reported separately, show that corrections to the
IPA are small in the k™3 case, but become important
when the spectrum flattens to k. Thus, corrections to
the IPA depend on two-point correlations as measured
by the spectrum, as well as higher-order correlations.
However, the IPA albedo itself is independent of the
spectrum. In the IPA, the only property of the vertically
integrated liquid water that matters is the one-point
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probability distribution. That is, the IPA depends only
on the probability of finding a certain fluctuation in the
liquid water, not on how the fluctuations are partitioned
by wavenumber, or how they are arranged in space.
Spatial information is needed in order to justify the IPA,
but not in order to compute it.

The one-point probability distribution function
(PDF) of W, computed from FIRE observations, is
shown in Fig. 1. This is based on measurements taken
at 10 Hz and averaged for 1 min by the NOAA upward-
looking 3-channel microwave radiometer on San Ni-
colas Island during 1-19 July 1987. The accuracy of
these measurements has been discussed by Snider
(1988), and the instrument itself is described in Hogg
et al. (1983). Although the instrument can detect down
to about 2 g m~2, the smaller values are more uncertain.
We will isolate these uncertainties by assuming that
values below 10 g m™2 are ‘‘cloud-free.”” The mean
and variance of the values of log(W ) above that thresh-
old are shown in the figure, along with a lognormal fit
and a fit based on the bounded cascade model described
in section 3.

The FIRE observations on which Fig. 1 is based were
affected by their proximity to land. Satellite measure-
ments show that the mean optical thickness decreased
from 12 to 10 from southeast to northwest through the
island (Minnis et al. 1992). However, calculations
show that the albedo bias due to the fractal structure is
much less sensitive to the mean liquid water and optical
thickness than to the variability of these quantities, as
we shall see. We show below that the mean and vari-
ability were correlated diurnally on the island, sug-
gesting that the variability may also be slightly less
farther offshore, in which case the bias would also be
slightly less. _

In plane-parallel theory, only the mean of the W dis-
tribution is used to estimate the reflectivity. A central
theme of this paper is that the mean fluxes are sensitive
to the variance of the cloud optical thickness, and not
only the mean. Subgrid-scale cloud variability is cur-
rently represented in GCMs by the ‘‘cloud fraction.”’
For stratocumulus in particular, however, we shall see
that the within-cloud variance matters more than the
cloud fraction. The IPA takes account of the within-
cloud variance, and in the bounded cascade model it is
parameterized by the fractal parameter f, which deter-
mines the width of the distribution in Fig. 1, as indi-
cated by the value of std dev[log(W)]. This variance
has a diurnal variation, as discussed in section 6, and
presumably also annual and geographical variations
that are not yet known. Clearly, much more climato-
logical information is needed on this fundamental
quantity, not only for the various stratocumulus re-
gimes but also for other cloud types.

3. Assumptions and the bounded cascade model

In order to estimate the bias in plane-parallel esti-
mates of stratocumulus cloud albedo, we shall make
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FiG. 1. Probability density of vertically integrated liquid water path
W [g/m?] is shown by the solid histogram, computed from 18 days
of one-minute averaged data acquired during the July 1987 FIRE field
program from the NOAA/WPL upward-looking 3-channel micro-
wave radiometer on San Nicolas Island. Values below 10 g m™ are
assumed cloud-free, and the histogram is divided by the total number
of counts above this threshold. The N = 18 907 values are binned in
25 equally spaced bins between logW = 1 and logW = 2.5. The
horizontal line shows the range of values within one standard devi-
ation of logW, and the vertical lines show the spacing between
TogW and logW, namely, A defined by (3.7). The dashed curve is a
lognormal with the same mean and variance, and the solid curve is
the bounded cascade model distribution with the same mean and
variance, obtained from a realization having f = 0.51.

three main simplifying assumptions: the IPA, constant
effective droplet radius, and the bounded cascade
model. Let us consider these in order.

The first simplifying assumption is the ‘‘independent
pixel approximation’> or IPA (Cahalan 1989), in
which the reflectivity of each cloud pixel depends only
on the vertical optical thickness of that same part and
not on the optical thickness of neighboring regions. In
other words, we neglect any ner horizontal photon
transport. This approximation is not generally true, but
can be shown to give the reflected flux of the bounded
cascade model to better than 1%, as shown in a separate
paper (Cahalan et al. 1994). The IPA is accurate when
the spectrum falls off rapidly enough that the variability
is sufficiently concentrated in the largest scales, as with
the k~*'* spectrum of the bounded model.

Note that while purely plane-parallel computations
depend only on the mean macro- and microphysical
properties of the cloud, the IPA depends upon all the
moments of the one-point distribution of cloud liquid
water, as is seen below in Eq. (3.10), for example.
Thus, it is not correct to refer to the IPA simply as a
‘‘plane-parallel’”” computation, although this confusion
has sometimes appeared in the literature. Note also that
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the IPA is not being applied here to a field of uniform
clouds with some fixed size and shape, but rather to a
cloud field having horizontal variations in the interior
optical properties over a wide spectrum of scales, as
further discussed below.

Our second simplifying assumption is that the effec-
tive droplet radius, 7., is constant, independent of W,
and independent of the cloud fractal structure. Many
studies have shown the dependence of r.; on liquid
water, location in the cloud, and other cloud parame-
ters. Much less attention has been given to the cloud
macrostructure. In order to devote full attention to the
cloud macrostructure, we shall ignore all spatial vari-
ations in the microstructure. In particular, we shall set
regr = 10 pm. Since the mean vertical cloud optical
thickness 7, is related to the cloud liquid water path W,
as

where W is given in grams per square meter and 7. is
given in micrometers (Stephens 1976), we obtain the
simple linear relation

7, = 0.15W. (3.1)
Typical values for stratocumulus are W = 90 g m~2 and
7, = 13, for a typical cloud thickness of 300 m (see,
e.g., Fig. 1).

Fairall et al. (1990) applied a detailed radiative
model to extended time observations during FIRE, and
found an approximately linear relation like (3.1). Na-
kajima et al. (1991) obtained r ~ 10—15 pum, from
scanning radiometer measurements taken during ER-2
flights over the FIRE stratocumulus. They found a ten-
dency for r.« to increase with W on days with thin stra-
tocumulus, and a slight tendency in the opposite direc-
tion on days with thick stratocumulus. The combined
data from all days is consistent with the simple equation
given above. [It is also necessary to combine a number
of days of data in order to reveal the skewness in the
W distribution, since some days have only thin or no
clouds, and some days show a bimodal W distribution,
perhaps associated with decoupled cloud and subcloud
layers.]

While W is inferred from the microwave observa-
tions, 7, is more appropriate for discussing radiative
computations. Actually, we shall see that the most con-
venient radiative variable is the logarithm of the ver-
tical optical thickness, because the reflection function
then becomes approximately linear, so that the mean
reflection is approximately the reflectivity of the mean
logarithm, which leads to a simple ‘‘effective thickness
approximation.”’ Use of the logarithm also has the con-
venient feature that the rescaling in (3.1) will not affect
the statistical moments. In all later equations, then, 7,
is equivalent to W through (3.1).
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a. Bounded cascade model

Our third simplifying assumption is that a two-pa-
rameter multiplicative fractal cascade model describes
the stratocumulus cloud liquid water distribution. One
parameter, the ‘‘scaling parameter,” ¢ = 27"/, is fixed
by the k ~>"> wavenumber spectrum observed during the
FIRE stratocumulus field experiment {Cahalan and
Snider 1989). The remaining free parameter, the “‘var-
iance parameter’’ f, is determined by the variance of
the logarithm of the cloud liquid water path, which de-
pends on the season and time of day, as well as on the
cloud type. Cahalan (1989) and Davis et al. (1991)
have previously considered the radiative properties of
multifractal cloud models, in which the cloud elements
are concentrated on a fractal set of zero measure. Such
a model can be obtained from the one considered here
in the limit ¢ — 1. We refer to the model contained in
that limit as the ‘‘singular model,”” while the one we
focus on here is the ‘‘bounded model.”’ Even though
the bounded model does not have the same scale in-
variance as the singular model, its wavenumber spec-
trum is still a power law, as shown in appendix A. The
general class of bounded cascades has self-affine scal-
ing properties, nontrivial structure functions, and non-
stationary multifractal properties (Marshak et al.
1994 ). The statistical moments of the bounded model
are derived in appendix B, which also discusses the
singular limit. A simple upper bound for the bounded
model distribution is derived in appendix C. [ Mandel-
brot (1983) discusses a similar class of fractals in his
chapter 15, and also in Mandelbrot (1986). For an ear-
lier application of fractals to ‘‘clouds’’ generated by a
passive scalar in two-dimensional turbulence, see We-
lander (1955).]

We will describe the model in its simplest form,
which produces a fractal in only one horizontal direc-
tion, with rescalings by powers of 2. Generalizations
to higher dimensions and other rescalings are straight-
forward. According to the IPA, more complex models
that also fit the observed PDF (Fig. 1) will have the
same mean albedo as computed here from the simple
model. However, the PDF alone is not sufficient to de-
termine the corrections to the IPA, which depend on
two-point quantities such as the wavenumber spectrum.
Such corrections turn out to be small for the parameter
values considered here (Cahalan et al. 1994). The
model proceeds as follows (see Fig. 2): begin with a
plane-parallel cloud slab, with a fixed thickness in the
vertical direction and in one horizontal direction, and
infinite in the other horizontal direction (out of the pa-
per in Fig. 2). Divide the slab in half lengthwise, and
transfer a fraction of liquid water, f;, from one half to
the other, with the direction of transfer chosen ran-
domly with equal probability. Next treat each of the
two halves in the same way: divide each in half, and
transfer a fraction of liquid water, f;, from one quarter-
slab to the neighboring one, with the transfer directions
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Start with uniform slab,

transfer fraction £, of liquid water,

direction random

and soon.

then transfer fraction f2 within each half,

fp = #2273 gives k"3 spectrum and
lognormal-like probability distribution.

FiG. 2. Schematic description of the bounded cascade model. For simplicity, the cloud inho-
mogeneity is restricted to one horizontal direction. The generating process begins with (a) a
uniform plane-parallel cloud that is infinite in one horizontal direction (out of the page) and has
a large but finite optical thickness in the perpendicular horizontal direction and a moderate vertical
optical thickness. This slab is then divided in half in the horizontally finite direction, and a fraction
Jo of liquid water is transferred from one half, chosen at random, to the other, producing two
uniform slabs, as shown in (b). The total cloud liquid water and the average vertical optical depth
are unchanged. Each of the two halves is then divided in the same way, and liquid water fractions
[y are transferred within each half. The quarters are then halved, and so on down to the available
resolution. The “‘singular model”” has f, independent of n and the power spectrum falls slower
than k™', while the ‘‘bounded model” has f, = fc" and the power spectrum falls faster than k'

and has a k™" spectrum when ¢ = 27'* =~ 0.8,

chosen randomly and independently. Continue the pro-
cedure by halving each of the quarter-slabs, transfer-
ring f, among eighth-slabs, and so on. In appendix A,
it is shown that if we let

f=fc", (3.2)

then the resulting distribution of W (or 7,) has a power-
law wavenumber spectrum S(k) ~ k~*, where the ex-
ponent is given by & = 1 — log,(c?), independent of
the value of fso long as ¢ < 1. Thus, a k~>* spectrum
is obtained by setting

c=2""=08. (3.3)

From here on, it is assumed that (3.3) holds, so that

the only remaining free fractal parameter is f, which
will be determined empirically from the standard de-
viation of log(W).

For convenience, we have described the cascade be-
ginning with the largest scales and proceeding to the
smallest, because we want to begin by computing the
plane-parallel albedo and see how this is affected by the
smaller scales. It is important to remember, however, that
the horizontal redistribution of liquid water is accom-
plished by turbulent mesoscale motions that are predom-
inantly two-dimensional and are thought to be associated
with an upscale cascade, in which energy cascading up
from convective scales eventually merges with the energy
cascading down from baroclinic scales. (See, e.g., Ca-
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halan and Snider 1989; Gage and Nastrom 1986; Kraich-
nan 1967.) Lilly (1989) has shown that no mesoscale
energy sink is needed to absorb the convective energy,
which simply becomes submerged in the baroclinic ac-
tivity at scales of several hundred kilometers.

Note that the total water, and thus the horizontal av-
erage liquid water path, W, is kept fixed at each step
of the cascade. However, the mean of the logarithm is
less than the logarithm of the mean. It is shown in ap-
pendix B that

log(W) = log(x(f)*W), (3.4)

where

o0

o=sx(H=dla-rm2=<1

n=0

(3.5)

is referred to as the ‘‘reduction factor.’”” Equation (3.4)
can be solved for x to give

x(f)=107%, (3.6)

where

A = log(W) — log(W). 3.7)

From (3.5), x can be determined from f, which in turn
is fixed by the standard deviation of log(W), whereas
(3.6) and (3.7) allow x to be determined from the dif-
ference between the log of the mean of W and the mean
of the log of W. Small values of W are always difficult
to distinguish from the cloud-free zeros, so the mean
of log(W) is more uncertain than the variance. Thus,
(3.5) is the preferred way of determining x. In Fig. 1,
f = 0.5, in which case (3.5) gives x ~ 0.7. That is
consistent with W =~ 92 g m™2, since log(92) ~ 1.96,
which exceeds log(W) by about A = 0.16, and x
= 107%! ~ (.7. We shall use this value of x to make
a rough estimate of the albedo bias.

b. Bias estimate

The fractal model provides a distribution of W,
which can then be converted to optical thickness via
(3.1). The computation of the albedo for the fractal
model is then a simple matter of determining the re-
flectivity of each cloud pixel from that pixel’s optical
thickness, according to the IPA. That requires a table
of values supplied by a radiative transfer computation,
as discussed in the next section. In order to make a
quick estimate of the bias, we consider the highly sim-
plified reflection function given by

YT

R(T)=1+y7"

(3.8)

where 7 is the optical thickness of any particular cloud
element, and ¥ =~ 0.1. This function is equivalent to
one of the two-stream approximations discussed by
King and Harshvardhan (1986), and can also be ob-
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tained by setting 6 ~ 45° in the analytic form given in
Eq. (D1).

From (3.4) and (3.1) we have for the optical thick-
ness

log(7) = log(xT.), (3.9)

since T = 7,. If we consider R as a function of log(7),
we may perform a Taylor expansion at each pixel about
the value of R evaluated at (3.9), so that R(log(7))
~ R(log(xT,)) + (log(1) — log(x7,))R" + (log(7)
—log(x7,))?R"/2 + . ... Averaging this over all pix-
els eliminates the R’ term, and we obtain

R(7,,f) =~ R(xT,) + MyR"(xT,)/2 + ---, (3.10)

where x = x(f) is given by (3.5), M, = M,(f) is the
variance of log(7) given by Eq. (B4), and the primes
indicate derivatives of R with respect to log(7), eval-
uated at 7 = x7,. The next section will explain why
the expansion about log(r) is preferable to an expan-
sion about 7 itself.

If we neglect the derivative terms in (3.10), we see
that the mean albedo is simply given by the plane-par-
allel albedo evaluated at a reduced ‘‘effective optical
thickness,”” namely, by

R(7y, f) =~ R(xT.), (3.11)

where the reduction factor, ¥, is determined from fvia
(3.5). Harshvardhan and Randall (1985) discussed the
concept of a reduced thickness, and estimated a reduc-
tion factor of y =~ 1/3 from global average values of
albedo and cloud liquid water. Davis et al. (1990) con-
sidered a related quantity, the ‘‘packing factor,”’ the
inverse of the reduction factor, and showed how it di-
verges in a singular model, in which case x — 0. For
parameters appropriate to marine stratocumulus, we
find that x =~ 0.7, obtained by setting f =~ 0.5in (3.5).
The next section will show that the derivative terms are
small at an intermediate optical depth on the order of
T, =~ 10 (y7, = 1), and also that the bias is approxi-
mately maximum at these optical depths. We refer to
(3.11) as the ‘‘effective thickness approximation’
(ETA), which is equivalent to the naive rule suggested
by Harshardhan and Randall. The ETA is more limited
than the IPA, but for the bounded cascade model it
gives a good estimate of the maximum bias for medium
thickness clouds.

From here on, we adopt the convention that the al-
bedo, as well as the absolute albedo bias, is always
expressed as a decimal fraction, while the relative bias
will be given as a percent. Then with the approximation
(3.11), the relative plane-parallel albedo bias may be
expressed as 100*(R(1,) — R(x7,))/R(T,), since
R(7,) equals the plane-parallel albedo, R,,. Substitut-

"ing (3.8) and setting y7, = 1 gives the highly simpli-

fied result:

1 —x
1+X'

relative bias =~ 100 (3.12)
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As we have seen from Fig. 1, f = 0.5 in order to ob-
tained the observed variance of log(W), and from (3.5)
x =~ 0.7, so according to (3.12) the relative bias is
approximately 18%. When the reduction factor is set
equal to the global value of x = 1/3, this bias increases
to 50%! This reflects the much greater variance of
cloudiness over the globe, as compared to marine stra-
tocumulus variability, which is relatively moderate.

Figure 3 shows graphically how the observed stan-
dard deviation of logW (std dev ~ 0.39 for marine
stratocumulus) determines the fractal parameter f
~ (.5, which in turn determines the relative plane-par-
allel albedo bias via Eq. (3.12). The dashed line shows
the global estimate. Clearly, observations of the distri-
bution of logW such as those in Fig. 1 need to be ex-
tended to other seasons and regions in order to better
estimate the associated albedo adjustments like those
in Fig. 3, and to understand the effects of cloudiness
on the large-scale energy balance.

If realistic amounts of marine stratocumulus liquid
water were distributed uniformly over a large ocean
basin, then according to (3.12) the large-scale albedo
would increase by approximately 18%. We have seen
that such a change if made globally would have a large
impact on the equilibrium surface temperature. The ef-
fect of changing the albedo of marine stratocumulus
would be somewhat less dramatic, since they are con-
fined to eastern ocean basins, and would adjust to al-
bedo changes not only through surface temperature, but
also by changes in dynamics. Nevertheless, the albedo
bias is large enough to be potentially significant, and
certainly indicates that the subgrid-scale structure
needs to be considered if cloud radiation and cloud lig-
uid water are to be treated consistently.

4. Conservative scattering

This section applies the IPA to compute the area-
average albedo of cloudiness generated by the bounded
cascade model described in section 3, using an analytic
reflection function for conservative scattering which
generalizes Eq. (3.8), as well as a numerical reflection
function computed from the fair weather cumulus
(FWC) phase function of King and Harshvardhan
(1986). A discussion of the properties of the reflection
function, R(T, ), will be followed by a discussion of
the plane-parallel bias, AR,,(7,, 8, f ). The dependence
of the bias on the optical thickness, sun angle, and frac-
tal parameter will be made clear, as well as the advan-
tage of expressing the bias in terms of moments of
log(W), or equivalently log(7), as in Egs. (3.9) and
(3.10), rather than W or 7.

a. Properties of the reflection function

The upper curve in Fig. 4a shows the analytic re-
flection function discussed in appendix D, Eq. (D1),
plotted as a function of the vertical optical thickness
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FiG. 3. Plot of the first two logarithmic moments of the bounded
model versus fractal parameter f. The solid curve is the standard
deviation of the logarithm, and the dashed curve is A, the logarithm
of the mean minus the mean of the logarithm. Both curves are plotted
on the left-hand vertical axis. Base 10 logarithms are used, and the
curves apply equally to the vertical optical thickness or the liquid
water path because of Eq. (3.1). The A determines the reduction
factor x by Eq. (3.6), and thus the relative albedo bias by (3.12), so
that the dashed curve also determines the bias, plotted on the rescaled
right-hand vertical axis. The lower horizontal lines indicate graphi-
cally how the observed value of Stdev(logW) is used to determine
f = 0.5, which in turn gives a rough estimate of the plane-parallel
albedo bias of AR,,/R,, =~ 18%. Similarly, the upper horizontal lines
show that the global estimate of x = !/ corresponds to a bias of
about 50%, and to f = 0.8, giving a global value of std dev(logW)
~ 0.7.

for a sun angle of 60°. It rises linearly from zero with
a slope given by the backscatter fraction and reaches a
value of 0.69 at W = 100 g m~2, or equivalently 7,
= 15. The lower curves in Fig. 4a show the area-av-
eraged reflectivity for increasing values of the fractal
parameter, f = 0.25, 0.5, 0.75, as computed by ex-
panding the reflectivity of each pixel as in (3.10). The
f = 0.5 curve, typical of FIRE as indicated in Fig. 1,
reaches a value of 0.60 at W = 100 g m™2, or 7, = 15.

The fact that the mean albedo decreases as f in-
creases for any given mean optical thickness is a result
of the convexity of R. As the distribution of T widens,
the darkening of those pixels where the optical depth
decreases by a given amount exceeds the brightening
of those pixels where the optical depth increases by the
same amount, so that the average cloud brightness de-
creases. As a result, the plane-parallel albedo bias is
strictly positive. This is an example of ‘‘Jensen’s in-
equality’” (Jensen 1906). This inequality holds only in
the context of the IPA. Errors in the IPA can be of
either sign, due to effects of horizontal photon trans-
port.
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FiG. 4. (a) Area-averaged albedo with the sun at 60° versus W, with the equivalent 7, shown on the upper horizontal axis. The upper curve
shows the plane-parallel albedo, which rises to 0.69 at W = 100 g m~2. The lower curves show the bounded model albedos for f = 0.25,
0.5, and 0.75, which rise to 0.67, 0.60, and 0.51, respectively. Subtracting the lower curves from the upper one gives the absolute plane-
parallel bias, which, for example, equals 0.09 at W = 100 when f = 0.5. The sign of the bias is related to the convexity of these curves, as
explained in the text. (b) The same curves as in (a) are plotted here out to W = 10 000 on a log scale. The change in the sign of the curvature
that occurs at intermediate values leads to the simplified ‘effective thickness approximation’” (ETA) expressed in (3.11). (¢) The bias is
plotted for the same three values of fover the same range of W as in (a), showing that the bias is approximately constant over the observed

range of W-(d) The bias is plotted here on the same log (W) scale as in (b), showing that it eventually returns to zero.

b. Dependence of the bias on optical thickness

Subtracting each of these lower curves in Fig. 4a
from the upper plane-parallel curve gives the absolute
plane-parallel bias plotted in Fig. 4c, and computed an-

alytically as

AR, (7,,8,f) = R(1,,0)
— {R(Ter, ) + MyR"(7¢ie, 8)/2},

where the primes indicate derivatives of the reflection

(4.1)

function with respect to log(7), evaluated at the re-
duced effective optical thickness given by

(4.2)

Tett = XTv>

with the reduction factor x defined in (3.5). Equation
(4.1) is derived in the same way as (3.10), by ex-
panding the pixel reflectivities about log(r), area av-
eraging, and subtracting the result from the plane-par-

allel reflectivity.
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The vanishing of the bias for thin clouds is a con-
sequence of the linearity of the reflection function for
small 7, since in that case the mean reflectivity equals
the reflectivity of the mean. For clouds of intermediate
thickness, 6 < 7, < 30, the bias is relatively insensitive
to the mean vertical optical thickness. In Fig. 4d the
bias is plotted versus log(r,), to show that for ex-
tremely thick clouds, 7, = 100, the bias eventually re-
turns to zero, since for the bounded model even the
thinnest pixel eventually becomes 100% reflective.
(Stratocumulus cloud optical depths of 100 are, of
course, of only theoretical interest, although in highly
absorptive clouds the bias becomes sensitive to the
mean at more accessible values, as discussed in section
5.) For the fractal scale parameter used here, namely,
¢ =~ 0.8, the maximum bias occurs in the observed
range of thicknesses seen in FIRE. For larger ¢, how-
ever (i.e., for a flatter spectrum), this maximum moves
to larger 7, until for the singular model, ¢ = 1, it is
only reached in the infinitely thick limit.

The convexity of the reflection function seen in Fig.
4a means that the second derivative, or curvature, of
the reflection function is negative. When plotted on a
logarithmic scale like that of Fig. 4b, however, the cur-
vature becomes positive for thin clouds, vanishes at
some intermediate thickness, and is negative for thick
clouds. The coefficient of the M, term in the analytic
bias expression in Eq. (4.1) is exactly the logarithmic
curvature of R, so that this term becomes small at in-
termediate 7,, near the inflection point of Fig. 4b,
which is also the region for which the bias is approxi-
mately maximum. For this intermediate thickness, then,
we may keep only the first term in curly braces in (4.1),
implying that the mean reflectivity is approximately
equal to the plane-parallel reflectivity evaluated at the
reduced effective thickness 7., as in the ETA of
(3.11). Thus, the ETA gives a good estimate of the
bias for clouds of intermediate thickness in the vicinity
of the maximum of the bias curve in Fig. 4d.

As Harshvardhan and Randall (1985) commented,
on a global scale it is necessary to reduce the observed
values of W or 7, by a factor of 1/3 in order to obtain a
reasonable albedo from a plane-parallel model. Ste-
phens (1985) replied that this ‘‘fudge factor’’ is not
likely to be a universal constant, but must depend upon
statistical information about the distribution of W. That
is exactly the information expressed by x(f ) for clouds
having a k~'* wavenumber spectrum and a lognormal-
like PDF. As we have seen, setting x = 1/3 in (3.12)
gives a 50% relative bias, which from Fig. 3 corre-
sponds to f= 0.8, or A ~ 0.5 and std dev(log) ~ 0.7.
As shown in the next subsection, this rough global es-
timate should actually be reduced for stratocumulus to
about 15%. The much greater variability and albedo
bias required by the global estimate, as compared to the
marine stratocumulus case, is related to the much wider
variability of clouds on the global scale. One example
is the contribution of deep convection to the global al-
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bedo. A better understanding of radiative transfer in
deep convection will require observations of liquid wa-
ter in tropical cloud clusters with sufficient spatial and
temporal sampling to extract statistical properties anal-
ogous to the stratocumulus liquid water distribution
shown in Fig. 1. It will also require the development
of fractal models appropriate to each particular cloud
type and meteorological regime.

Since the analytic expression (4.1) is clearly useful
in understanding the albedo bias, it is important to as-
sess its accuracy. Here that will be done with IPA com-
putations. The accuracy of the IPA has itself been ver-
ified by Monte Carlo calculations, as reported sepa-
rately (Cahalan et al. 1994). Since the plane-parallel
reflectivity is a smooth function, accurate IPA estimates
may be computed from a detailed numerical table, from
which the reflectivity for any given value of 8 and 7
may be interpolated. The solid curve in Fig. 5 shows
the relative albedo bias computed from such a *‘lookup
table’’ computation, using a table computed from the
FWC phase function of King and Harshvardhan
(1986), and the same parameter values used for the

Vertical Optical Thickness
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FiG. 5. The relative *‘plane-parallel bias,”” namely, the absolute
plane-parallel bias divided by the plane-parallel albedo. The solid
line is computed from the middle curve (f = 0.5) in Fig. 4d. It reaches
a maximum at optical thickness 7, = 6 of about 100%0.075/0.5
= 15%. This peak value is slightly less than the estimate made from
Eq. (3.12) in the text. The upper dotted curve is an overestimate -
based only on the variance of W, neglecting the skewness of the
distribution, while the lower dotted curve gives an underestimate that
includes the skewness but neglects the fourth moment. This expan-
sion in moments of W alternates sign and converges slowly. An ex-
pansion in moments of logW converges from below since there are
only even moments, and much more rapidly, as shown by the dashed
curve, which includes only moments up to the variance of logW.
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solid curve in Fig. 4d. Note that the relative bias rises
to its maximum of about 15% more rapidly than the
absolute bias, nearly reaching it by 7, = 1.5. The
dashed curve shows the analytic expression for the rel-
ative bias obtained by dividing (4.1) by the plane-par-
allel reflectivity. It approximates the numerical results
over the range of interest, W = 10 g m~2, or 7, = 1.5,
to better than 1%. [ Note that the analytic estimate relies
mainly on the accuracy of the logarithmic curvature of
R, rather than R itself. Differences between the FWC
table and the analytic R of appendix D are in fact some-
what larger, and reach a maximum of about 10% near
0 =~ 45°, remaining less than 5% elsewhere except near
the horizon.]

The two dotted curves in Fig. 5 come from an ex-
pression similar to (4.1) but are obtained by expanding
the pixel reflectivities about W, or 7,, rather than
logT, and then averaging, keeping moments up to the
variance (upper curve) or the skewness (lower curve).
Clearly, the expansion about log7 as in (4:1) provides
a much better approximation than an expansion about
7. This occurs because the log expansion has two ad-
vantages: 1) the distribution is symmetric about the
mean logarithm, so the logarithmic skewness and all
other odd logarithmic moments vanish, giving more
rapid convergence; 2) the derivative coefficients in the
expansion in linear moments alternate in sign, giving
first an overestimate, then an underestimate, etc., as
shown by the dotted curves in Fig. 5, while as we have
seen, the logarithmic curvature and higher derivatives
tend to be small where the bias is large.

¢. Dependence of the bias on sun angle

The above results were restricted to a solar zenith
angle of 60°, typical of the FIRE observations. Figures
6a and 6b show contour plots of the absolute and rel-
ative plane-parallel albedo bias, respectively, as a func-
tion of both optical thickness and the cosine of the solar
zenith angle, as computed from the same FWC reflec-
tivity table used in Fig. 5. (Similar results have been
obtained with the Henyey—Greenstein phase function.)
As seen in Fig. 6a, at a mean vertical optical thickness
of 7, = 15 the bias is less than 0.04 near the horizon;
it increases to 0.08 near § = 60°, corresponding to the
peak in Fig. 4c, and then to 0.1 near the zenith.

For sun angles within 30° of the zenith (i.e., cosé
= (.5), the bias decreases away from the zenith, with
the absolute bias peaking near 7, =~ 15-30 and the
relative bias peaking near 7, =~ 5-10. Intuitively, the
bias decreases as the sun gets lower because the vari-
able cloud looks more uniform away from the zenith,
since the reflection of each pixel is larger. However,
this naive argument fails for thin clouds, as the plots
show. For example, at 7, =~ 1, the bias is still small
near the horizon, but increases to a maximum when the
sun is only about 15° above the horizon, and then de-
creases toward the zenith. The variability of very thin
clouds is more significant at larger solar zenith angles.
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d. Dependence of the bias on fractal parameter f

The absolute albedo bias was estimated above to be
about 0.09, and the relative albedo bias about 15%,
based on a value of the fractal parameter typical of the
FIRE stratocumulus observations, f ~ (0.5. We saw
above, however, that a value closer to /'~ 0.8 is needed
for global estimates, and in section 6 we shall consider
values down to f = 0.3 during the diurnal cycle of
stratocumulus. The reduction factor computed from
(3.5) for f= 0.3, 0.5, and 0.8 is roughly x = 0.9, 0.7,
and 0.3, respectively, resulting in a relative bias of ap-
proximately 5%, 18%, and 54%, respectively, as esti-
mated from Eq. (3.12).

These naive estimates from (3.12) clearly indicate
that the albedo bias increases rapidly with the fractal
parameter. That is verified by more detailed ‘‘lookup
table’’ computations using the FWC table, as shown by
Fig. 7, which is a contour plot of the relative bias as a
function of fand 7,, for 8 = 60°. The maximum bias
values at f = 0.3, 0.5, and 0.8 are 5%, 15%, and 38%,
respectively. The bias varies very little with the mean
optical thickness, remaining nearly equal to its maxi-
mum value over the range 1 < 7, < 100. (Similar
results have been obtained with the Henyey—Green-
stein phase function.)

5. Absorption

In order to assess the effects of absorption on the
plane-parallel albedo bias, the same ‘‘table lookup”’
approach was applied to compute the mean reflectivity
of stratocumulus clouds generated by the bounded cas-
cade model, for values of the single scattering albedo
less than unity. The resulting relative bias is shown in
Fig. 7b for a single scattering albedo of w, = 0.99.
Comparing this to the conservative case, Fig. 7a, it is
evident that the maximum relative biases in both cases
at, say, f = 0.3, 0.5, and 0.8 are still approximately
equal to the conservative values of 5%, 15%, and 38%,
but now these occur at somewhat lower values of 7,
and the bias decreases more rapidly for thick clouds.
For example, at f = 0.5, the bias still exceeds 5% at 7,
= 100 in the conservative case, but is about 1% at when
wy = 0.99. It falls well below 1% at 7, = 100 in the
extreme case of wy = 0.90 (not shown).

The bias is most sensitive to changes in the mean
optical thickness where the derivative with respect to
7, is maximum. We have seen from Fig. 4d that the
bias becomes sensitive to the mean only at thicknesses
~ 100 when wy = 1.0 and f = 0.5, whereas Fig. 7b
shows that the bias becomes sensitive to the mean al-
ready at thicknesses =~ 80 when w, = 0.99 and f = 0.5.
Even in the strongly absorptive case this occurs well
above the mean thicknesses seen in marine stratocu-
mulus.

These results indicate that plane-parallel computa-
tions are likely to be quite good for thick strongly ab-
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sorbing clouds. Of course, such clouds generally have over dark ocean surfaces. Note that such strongly ab-
a much smaller albedo than nonabsorptive clouds, and  sorbing clouds cool the surface independent of the sur-
thus have less impact on the planetary average albedo face albedo, due to the low transmission of solar en-
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FiG. 7. The relative plane-parallel albedo bias for the bounded model with f = 0.5, ¢ = 0.8, and for (a) wy = 1.0 and (b) w, = 0.99,
defined as in Fig. 5 but as a function of fractal parameter and mean vertical optical thickness.
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ergy. An extreme example of this was the cloud formed
from the soot plumes of the 1991 Kuwait oil fires,
which had a single scattering albedo on the order of
0.6 and lowered surface temperatures under the plumes
by 10°C [see, for example, Cahalan (1992) and other
papers in that issue].

6. Stratocumulus diurnal cycle

Since the fractal parameter, f, is determined by the
variance of logW, it is interesting to examine the di-
urnal change in fimplied by observed changes in the
variance of log(W). By compositing the 1-minute-av-
eraged values of W over the 18 days used to determine
Fig. 1, for each hour of the day, we can determine the
mean and variance of W over the full diurnal cycle for
California marine stratocumulus during July 1987. As
in Fig. 1, only measurements exceeding 10 g m™2 are
included, and the fraction above this threshold defines
the cloud fraction, which is thus also known for each
hour.

Results of this analysis are shown in Fig. 8, which
shows the diurnal variations of the mean vertical optical
thickness 7, = W/0.15, the solar zenith angle in degrees
at San Nicolas Island during July, the cloud fraction,
and the fractal parameter f. The optical thickness has
an early morning maximum of 7, = 24 around 0600
local time and a secondary maximum around 0900 then
falls to a minimum of 7, = 6 in the late afternoon. This
is the least important of the plots, since the albedo bias
is relatively insensitive to changes in 7, over this range,
as was seen in Figs. 4 and 7. The average cosine of the
sun angle is 0.54, corresponding to 57°. The cloud frac-
tion reaches a maximum near 100% at 1100, and drops
to about 60% at 1600. During the morning hours, when
the cloud fraction is high, the within-cloud variability
is also high, with freaching a maximum of about 0.6,
while in the afternoon f decreases to about 0.3, the
average being 0.46. Corrections made to the cloud al-
bedo in climate models usually depend only on the
cloud fraction and solar zenith angle, and in this case
would only be important in the afternoon when the
cloud fraction is low and the sun is high. We will now
show, however, that the most significant correction to
the plane-parallel albedo of stratocumulus occurs in the
morning, when the variability is large, so that the fractal
parameter is nearly maximum, despite the fact that the
cloud fraction is also nearly maximum at that time.

To estimate the albedo bias for nonovercast situa-
tions, we need a model for the clear sky reflectivity,
and we shall assume that it vanishes for all zenith an-
gles. Thus, we assume that the ocean is perfectly ab-
sorbing, so that the albedo is zero. We also ignore haze,
small cumulus clouds, and other atmospheric effects
that are especially important when the sun is near the
horizon. This error makes little difference at sunrise,
when the cloud fraction is nearly 100%. But our results
become untrustworthy in the late afternoon and eve-
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FiG. 8. Diurnal variations in (a2) mean vertical optical thickness
[ from W via (3.1)]; (b) solar zenith angle (for San Nicolas Island
in July); (c) stratocumulus cloud fraction (from fraction with W
> 10 g m~?); and (d) fractal parameter (from std dev(logW) via
Fig. 3). All cloud parameters are determined by compositing histo-
grams like that in Fig. 1 for each hour of the day during the 18-day
1987 FIRE period.

ning, when the sun begins to set, and the clear fraction
still exceeds 30%. With this caveat, the parameters of
Fig. 8 were used as input to an IPA computation of the
absolute plane-parallel albedo bias, and the results are
shown in Fig. 9. The solid line, which shows the total
bias, reaches a maximum of about 0.10 around 0900--
1000 when the cloud coverage is nearly overcast, then
falls to a minimum of about 0.06 at 1500, before in-
creasing again due to the ‘‘limb bias’’ caused by our
neglect of the clear sky reflectance.

To better understand the total absolute bias, we can
split it into two parts as follows:

AR,, (A, f) = [R”,"( 100%) — R,,(Ac)]

+ [Ry(A) — R(AD]. (6.1)

Here the total bias is the difference between the first
and last terms, where the first term is computed with
the cloud liquid water uniformly covering 100% of the
region, and the last term is computed from a fractal
distribution of the same amount of total liquid over the
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F1G. 9. Diurnal variation of the absolute plane-parallel albedo bias
for stratocumulus clouds, computed from the diurnal variations in
cloud properties shown in Fig. 8. The dotted curve is the contribution
due only to the cloud fraction, using only plane-parallel computa-
tions. The dashed curve is the additional bias associated with the
within-cloud variability. The sum of the dotted and dashed curves
equals the total bias given by the solid curve, as in Eq. (6.1).

cloud fraction A.. The contribution of the cloud fraction
can be separated from that of the within-cloud fractal
structure by summing the bias due to changing only A,
without changing the uniform distribution, to the bias
computed by keeping A, fixed, and replacing the uni-
form distribution by the bounded cascade.

It is clear that the relative importance of the fractal
structure must increase with cloud fraction, indepen-
dent of the bounded cascade model, since the first term
in (6.1) vanishes as A, = 100%. The increase in im-
portance of within-cloud structure with A, is enhanced
by the observed fact that the within-cloud variance is
greatest in the morning when A, = 100%, resulting in
the larger values of f in Fig. 8 during the morning
hours.

The first difference in Eq. (6.1), the ‘‘cloud fraction
bias,”” is plotted as the dotted line in Fig. 9. It falls to
zero in the morning when the cloud fraction reaches
100% and then rises as the sun goes down to a value
equal to the cloud fraction, due to the limb bias. The
second difference, the ‘‘fractal structure bias,’’ is ini-
tially roughly equal to the cloud fraction bias at sunup
but then rises to dominate the total bias in late morning,
before decreasing to less than 0.05 again in the after-
noon.

Because of the high variability in the cloud structure
during the morning hours, the plane-parallel approxi-
mation for cloud albedo tends to be most in error in the
morning, precisely when the cloud fraction is ap-
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proaching 100%! The usual albedo correction due to
cloud fraction is small, and also out of phase with the
total bias. Thus, in estimating the stratocumulus cloud
albedo, the cloud fraction is not only less important
than the within-cloud variability, but also misleading
in its dependence on local time, at least for the Cali-
fornia stratocumulus clouds seen during 1987 in FIRE.

7. Results and discussion

In plane-parallel theory, the horizontal-average re-
flectivity is computed from the horizontal-average ver-
tical optical thickness. But the average reflectivity and
other mean radiative quantities are also sensitive to the
variance of the cloud optical thickness. A given amount
of total cloud liquid water invariably produces the
greatest mean albedo when it is uniformly distributed
as in the plane-parallel model, so that plane-parallel
estimates have a positive ‘‘plane-parallel albedo bias.”’
Current GCMs attempt to parameterize the albedo bias
in terms of the “‘cloud fraction,”” but for marine stra-
tocumulus, a major contributor to net cloud radiative
forcing, the within-cloud variance is responsible for
most of the plane-parallel albedo bias, while the bias
contributed by the cloud fraction vanishes precisely
when the bias is largest. (In the bounded cascade
model, the within-cloud variance is determined by the
fractal parameter f, while the distribution of variance
with wavenumber, i.e., the spectrum, is determined by
the scaling parameter ¢.) The within-cloud variance
has a diurnal variation, as discussed in section 6, and
presumably also an annual variation, which is not yet
known. Hopefully, future field experiments will pro-
vide more climatological information about this fun-
damental quantity, both for the various stratocumulus
regimes and for the other cloud types and meteorolog-
ical conditions that make significant contributions to
the large-scale climate.

The main results of this study are summarized as
follows:

1) Aninhomogeneous cloud field has a lower meso-
scale-average albedo than a plane-parallel cloud having
the same microphysical structure and the same total
liquid water. Thus, a given cloud field has a positive
plane-parallel albedo bias for any given fractal struc-
ture.

2) The mesoscale-average albedo of the FIRE ma-
rine stratocumulus clouds is more sensitive to the
within-cloud fractal structure than it is to the cloud frac-
tion. The albedo bias due to the within-cloud structure
is largest for overcast clouds for any given fractal struc-
ture.

3) Plane-parallel estimates of the mesoscale-aver-
age albedo of the FIRE marine stratocumulus are most
in error when the cloud variability is largest, which
occurs when the cloud fraction is largest, when the
cloud optical thickness is moderate (=~10), and when
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TABLE 1. Primary quantities and symbols.

Quantity

Symbol Typical values

Fractal cascade

Variance parameter
Spectral parameter
Reduction factor

f 0.5 (0.8 global)
c 0.8 (k=" spectrum)
X 0.7 (0.3 global)

Macrophysical

Integrated liquid water w 90 g/m®
Mean vertical optical thickness Ty 15
Reduced vertical optical thickness Tetr 10
Pixel vertical optical thickness T 0.1-100
Sun angles 9, ¢ 60°, 0°
Microphysical
Asymmetry parameter g 0.843
Single scattering albedo We 0.99-1.0

Cloud/solar flux ratios

Reflected, transmitted, absorbed R, T A 0.6, 0.4, 0.0
Independent pixel (ip) estimates Rip. Tip, Ay 0.6,04, 0.0
Plane-parallel (pp) estimates Rops Tops App 0.7,0.3,0.0
pp biases (R,, — R,,, etc.) AR,,, AT,,, AA,, 0.1, -0.1,0.0
ip biases (R;, — R, etc.) AR, AT, AA, 0.0,0.0,0.0

the sun is nearest to the zenith. The absolute bias is
typically about 0.09 and the relative bias is about 15%.
(For thin clouds of optical thickness ~ 1, the maximum
bias occurs when the sun is near the horizon.)

4) For the FIRE marine stratocumulus, the albedo
can be estimated from the plane-parallel albedo for an
‘“‘effective’’ vertical optical thickness that is reduced
from the mesoscale-averaged value by a factor x =~ 0.7.
This ‘‘effective thickness approximation’ (ETA) is
most accurate at intermediate thicknesses (=~10). The
reduction factor y varies with local time and presum-
ably with season and region.

The FIRE observations on which these estimates are
based were affected by their proximity to land and
show somewhat higher mean values than farther off-
shore (Minnis et al. 1992). However, the albedo bias

TABLE 2. Comparison of cascade models.

Quantity Singular model Bounded model
Cascade

fractions fa = const = f fo=frc"c=08
Maximum

thickness Tmax ~> ® Tmax < To €Xp(fI(1 — <))
Wavenumber '

spectrum S(k) ~ k™' or flatter Sk) ~ k™"
Plane-parallel

bias >20% 15%
IPA bias <-10% =1%

mainly depends on the variance and wavenumber spec-
trum of the cloud liquid, and not the mean. The spectral
exponent agrees with those observed for other scalar
quantities over a wide range of scale (e.g., Gage and
Nastrom 1986). The variance of the logarithm of the
integrated liquid water has not yet been widely ob-
served. As we have seen, it is a fundamental parameter
for determining inhomogeneous corrections to plane-
parallel albedo estimates, on the same level of impor-
tance as the cloud fraction. It is crucial that a climatol-
ogy of this quantity be compiled, at least for marine
stratocumulus clouds, which are essential to the net
cloud radiative forcing.

Large errors in regional quantities such as surface
temperature and/or heat fluxes to other regions, which
would result from a 15% plane-parallel albedo bias, are:
avoided by current climate models either by adjusting
the albedo directly, thus decoupling cloud liquid from
cloud radiation, or reducing the cloud liquid. If such a
“‘reduction factor’’ can in fact be sensibly defined, it
must depend upon the fractal structure, as exemplified
here by x(f), defined in Eqs. (3.4)—(3.7). In the
bounded cascade model, the ‘‘effective thickness ap-
proximation’’ for the mesoscale-average albedo can be
justified for optical thicknesses typical of marine stra-
tocuamulus. The reduction factor x(f) is a function of
the fractal parameter, and according to the FIRE ob-
servations is about 0.7. Thus, the typical observed value
of 90 g m? (see Fig. 1) is reduced to 63 g m™2, cor-
responding to a reduction in optical thickness from 15
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to 10, and a corresponding reduction in albedo from
0.69 to 0.60. Harshvardhan and Randall found that a
much more dramatic reduction in global cloud liquid,
by a factor of x(f) = 0.3, is needed to obtain a rea-
sonable global albedo. The bounded model is not gen-
erally appropriate for other cloud types that contribute
to the global albedo. Other cloud types are likely to
have larger albedo biases, but careful estimates must
await the development of more appropriate models.

Our conclusions rely upon three main simplifying
assumptions:

1) independent pixel approximation (IPA);
2) constant droplet radius (7, = 0.15W);
3) bounded cascade model (f, = fc").

We now discuss each of these in turn.

The most significant of these assumptions is the IPA,
which has been thoroughly tested for both the bounded
cascade model and the singular model, as reported in a
separate paper (Cahalan et al. 1994). As shown there,
the IPA is quite accurate for the bounded model due to
the rapid falloff of the wavenumber spectrum. While
the accuracy of the IPA depends on the spatial pattern,
the IPA results themselves depend only on the one-
point probability distribution function shown in Fig. 1
and pot on how the liquid is distributed spatially:
whether in streets as in Fig. 2 or in a more general two-
dimensional pattern. Even in the singular model, where
the IPA errors are large, the simplicity of the IPA
makes it a convenient tool for exploring the parameter
space to determine where more detailed and expensive
Monte Carlo computations are likely to be necessary.

Although the IPA has sometimes been loosely re-
ferred to as a ‘‘plane-parallel computation,’” it depends
on all the moments of the one-point PDF, including
both the mean and the variance, so that it is important
to distinguish it from a simple plane-parallel compu-
tation, which is strictly a function of the mean quanti-
ties. Of course each individual pixel contribution to the
IPA is a simple plane-parallel computation and has its
own associated plane-parallel bias, due to the neglected
subresolution variability and also due to radiation from
neighboring pixels. In a separate paper (Cahalan et al.
1994), we show that these individual biases can be
quite large but tend to cancel out in the area average
when the variability is generated by a bounded cascade.
While we have focused here purely on the mesoscale-
average albedo relevant to climate models, an impor-
tant alternative application is the determination of er-
rors in remote sensing estimates of cloud properties,
such as the ISCCP estimates of cloud optical thickness
(Rossow and Schiffer 1991). Cloud optical thickness
estimates determined from 1-km satellite pixels tend to
be smaller than those found by in situ observations.
One source of such discrepancies may be a ‘‘reduction
factor’’ due to subpixel inhomogeneity.

There is evidence that the droplet radius varies with
optical depth in opposite directions for thick and thin
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stratocumulus clouds, as discussed, for example, by
Nakajima et al. (1991). There is also some evidence
that r. may depend upon the fractal cloud structure,
since there is some evidence that drop sizes are smaller
near cloud perimeters (Durkee 1988; Minaert 1988;
Coakley 1991; Wielicki and Parker 1992), so that the
area-average 7. may depend on the perimeter fractal
dimension. Our goal in the present paper has been to
estimate the albedo bias for clouds that have the ob-
served wavenumber spectrum and probability distri-
bution observed for stratocumulus liquid water, while
being otherwise as nearly plane parallel as possible. In
that spirit, we have neglected variations in both the
cloud microphysics and the cloud shape. More obser-
vations and theoretical work are needed in order to bet-
ter understand the correlations between cloud micro-
physics and cloud geometry.

The bounded cascade model used here generates a
continuous distribution of liquid water and optical
depths, bounded both above and below. The distribu-
tion becomes spatially uniform at small scales, and has
the observed k>’ wavenumber spectrum. It is a very
conservative substitute for the plane-parallel model.
Thus, the estimates for the plane-parallel albedo bias
given here are also conservative. By

Note that the first two results listed above, namely,
the positivity of the bias and the increase of the bias
with cloud fraction, do not depend on the specific struc-
ture of the bounded cascade model pictured in Fig. 2.
They follow more generally from the IPA, which relies
mainly on the observed rapid falloff of the wavenumber
spectrum of cloud liquid water and the low-order mo-
ments of the PDF.

The bounded cascade is perhaps the simplest model
that is able to reproduce both the power-law wavenum-
ber spectrum and the lognormal-like PDF shown in Fig.
1. Additive models, such as a simple Fourier series,
generate normally distributed cloud liquid values, thus
omitting the skewness, which makes a large contribu-
tion to the bias as shown in Fig. 5. On the other hand,
a purely lognormal PDF distributed randomly in space
omits the observed spatial correlations, which make the
IPA applicable to stratocumulus clouds. The distribu-
tion generated by the bounded cascade is simpler and
more realistic than a lognormal because of its bounded
character.

More complex cascade models must reproduce the
observed PDF and wavenumber spectrum of the ver-
tically integrated liquid water, as the bounded cascade
does, but they may also attempt to simulate the vertical
cloud structure. The present study of the effects of hor-
izontal inhomogeneity is complemented by that of Ste-
phens et al. (1991), which considered a horizontally
uniform cloud layer having a random distribution of
optical depth in the vertical direction. (Variations in
single-scattering albedo were found to be less signifi-
cant.) In marine stratocumulus, the mean quantities in-
crease linearly with height, so that most of the liquid
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water is concentrated within a few tens of meters near
the cloud top, which is where most of the reflection
occurs. Monte Carlo studies show that the photon field
tends to smooth out variations on the order of the pho-
ton mean free path of about 100 m (Cahalan 1989), so
that smaller-scale variations do not alter the average
albedo. Thus, we doubt that the vertical variations in
marine stratocumulus liquid water would affect our es-
timates of the average albedo. However, further devel-
opment of cascade models to include both horizontal
and vertical variations is certainly needed, and must be
accompanied by observations of both vertical and hor-
izontal variability.

The 15% reduction in reflectivity found here due
only to liquid water variability, with no change in mean
liquid water or cloud fraction, is as large as that found
by Coakley (1991) due to increased ‘‘brokenness,’’ as
inferred from the spatial coherence method applied to
1-km AVHRR satellite data. Such variability in satel-
lite-observed reflectivity is commonly interpreted in
terms of cloud fraction, but may also arise from varying
liquid water amounts, as well as other inhomogeneities
in the cloud field. Although this paper has focused upon
the mesoscale biases appropriate for climate models,
error estimates on the 1-km scale appropriate for re-
mote sensing must also rely upon models of cloud
structure that reproduce the observed dependence of
cloud variability on spatial scale, cloud type, season,
and local time.

Larger plane-parallel albedo biases are expected for
other cloud types, such as cirrus or deep cumulus, that
exhibit structures much further from being plane-par-
allel than stratocumulus. Errors in plane-parallel esti-
mates of mesoscale-average emissivity of such clouds
may partially compensate the albedo bias, perhaps
leading to a smaller bias in ner fluxes. The fractal sta-
tistics of such clouds, however, are still poorly known.
Other cloud types not only exhibit a much broader dis-
tribution of liquid water, but also are much more spa-
tially complex. Computing the larger radiative biases
for such clouds, in both the solar and thermal regimes,
will require considerable observational data, more sub-
tle fractal models, and highly optimized three-dimen-
sional Monte Carlo radiative transfer codes. Some of
the observations will come from the Atmospheric Ra-
diation Measurement (ARM) field program. As that
occurs, the fractal models will need to be made more
realistic and will gradually become more constrained
by the data. Realistic radiative computations need to be
tied to the attempts now under way to incorporate the
hydrological cycle into global climate models, so that
the cloud liquid water and the cloud radiation will even-
tually be treated consistently.
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APPENDIX A
Spectrum of Cascade Models

The spatial spectrum of the variations in optical
depth generated by the cascade model will be derived
here. A simple method introduced by Lorenz (1979)
for obtaining information about the spectrum of a ran-
dom process is used. His ‘‘poor man’s spectral analy-
sis’’ is based on examining the variance of the running
mean of a process at one scale after removing the run-
ning mean at twice that scale. The method turns out to
be well suited to determining the power spectrum of
the multiplicative cascade model.

Consider a stochastic function f(x) whose statistics
are homogeneous; that is, they do not depend on po-
sition x. The lagged covariance of the function is

c(x) = (f"(x)f " (x + x)), (AD)

where a prime denotes deviation from the mean, and
the angular brackets denote averaging over a popula-
tion of functions all with the same statistics. The co-
variance ¢(x) does not depend on position x, because
the statistics are assumed homogeneous. The power
spectrum for the function is obtained from the Fourier
transform of the covariance,

S(k) = f_m dxe **c(x). (A2)

Consider next the averages of f( x) over segments of
lengthL,,n=0,1,2, ---,

) (A3)
" where the intervals L, decrease by factors of 2:
L,=2""L,. (A4)
The variance of f,, _
Vo =((F ), (AS5)

can be expressed after a bit of algebra (see, for exam-
ple, Jenkins and Watts 1967) in terms of the spectrum
as

| I .
V.= —f dkF (kL,)S(k), (A6)
27 J e
where the ‘“filter’” # is given by
F (z2) = sin*(z/2)/(z/2)*. (A7)

Lorenz then defines the variance increment



15 Aucust 1994

A‘/n =V,— Vo1, (AS)

which represents the variance of f( x) on scales L, rel-
ative to averages over scale L, ;. The variance incre-
ment can also be written as a filtered version of the
spectrum,
1 oo
AV, = 2—-f dkD (kL) S(k), (A9)
7T —_00
with
D(z) = sin*(2/2)/(z/2)2. (A10)

The filter function & (z) peaks near z ~ m, with
width of order 1, and AV, therefore gives the spectral
power contained in the octave near wavenumber

™

k, .
L,

I

(A11)

The variance increment is particularly informative
when the power spectrum behaves like a power law,

Sk)y ~k™*, —-1<a<?2 (Al12)
Equation (A9) then implies that
AV, ~ ky. (A13)

[The extra factor k, comes from the integral over the
width of the filter function. For « < ~1 or @ > 2 the
behavior of AV, becomes sensitive to the behavior of
the spectrum outside the octave around k, in (All),
and the Lorenz method must be modified to establish
power-law behavior.] It follows from (A11) and (A4)
that

AV, ~ 2= (Al4)

when the spectrum behaves like a power law. Thus, by
identifying power-law behavior of the Lorenz variance
increments AV, as in (A14), the exponent & describing
the spectrum (A12) can be extracted.

Using the ‘‘poor man’s spectral analysis,’’ the power
spectrum of the multiplicative cascade model defined
in section 3 and Fig. 2 can now be determined. After
n steps in the cascade process, the optical thickness of
one of the segments at the end of the cascade is given
by '

.= [T (1 = )17,

k=1

(A15)

where the sign of each factor is chosen randomly. The
mean square optical thickness is

(2 =[TT(Q = 172,

k=1

(A16)

using the fact that each factor varies independently of
the other. The variance increment (A8) is
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AV, = (7‘;‘:) — (730

n—1

= [T wel(p = D72 (A17)
k=1
with
e = {(1 ££)?
1+72, singular model
= 4 & Al8)
1 + f%c*, bounded model.

Substituting (A18) into (A17), the large-n behavior of
the two models is identified as

1 2n,
A%~{(+f)

singular model
(A19)

2n

c?, bounded model.

Comparing this behavior with (Al4), the expo-
nent « in the spectral power law Eq. (A12) is found
to be

{1 — logy(1 + f2),
a =

1 — log,c?,

singular model
bounded model, ¢ > .
(A20)

Note that the singular model exponent « is limited
to 0 < a < 1, since 0 < f < 1. The bounded cascade
model exponent must satisfy 1 < a < 2 in order for
the Lorenz method to be applicable, so that Eq. (A20)
is valid only for 1/ < ¢? < 1. For ¢? < 1/, a careful
analysis of the model behavior reveals that the spec-
trum is dominated by the spectral power ~k ~* from the
step function discontinuities in the optical thickness,
and the exponent « therefore plateaus at a = 2 for ¢?
< 1/. Scaling properties of the bounded cascade
model, and generalizations of it, including exponents
of the various structure functions, are discussed in some
detail in Marshak et al. (1994).

APPENDIX B
Moments of the Optical Depth Distribution

This appendix derives the important result (3.9) for
the mean of the logs in the bounded cascade model,
and provides an expression for M,, the variance of the
logs. We also give analytic forms for the second and
third central moments, m, and m;. We will see that
these develop an essential singularity as ¢ = 1. The
derivation requires considerable algebraic manipula-
tion and is only sketched here. We give all results in
terms of optical depth, but they apply equally to the
integrated liquid water.

First consider a specific realization of the model
described in Fig. 2 in which the liquid is always
moved toward the right. The sequence of pixel op-
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tical depths in the first three cascades, then, would
look like this:

_—
—— ot

B Tt e O e

where the signs indicate whether the optical depth of
that pixel is increased or decreased. Wherever a + or
— appears, the optical depth at that pixel is multiplied
by a factor of (1 + f,) or (1 — f,), where n is the
cascade step and f, = fc". By construction, 7 = 7, does
not change during the cascade. Any other realization
differs from this one only by a reshuffling of the pixels
at each step, without changing the set of values. To
compute the mean of the logarithms, for example, we
take the logarithm of each pixel value and average over
all pixels. Clearly, such averages do not depend on the
order of the pixels. Each pixel value has the form

T,,=T,,1£I(liﬂ).

k=0

(B1)

Since 7, multiplies every pixel, it simply shifts the av-
erage of the logs by a constant, which we can set to
zero by assuming 7, = 1. Then at the first step the mean
logarithm is [log(1 — f,) + log(1 + £)1/2 = log/(1
— f%). At the next step we double the number of terms
by including the factors (1 * f;) in the argument of
each logarithm, and divide by 4. Performing expan-
sions such as log[(1 — fo)(1 + fi)] = log(1 — f;)
+ log(1 + f}) gives a coefficient of 2 in front of each
term, reducing the denominator to 2, giving [log(1
- fH + log(l — fHI2 = logiv(1 — fH(l
— fD]. Continuing in this way, it is easy to verify
(3.9) by induction.

The second logarithmic moment, that is, the variance
of log(7) or M,, can be found similarly by induction.
The result is

M) =3 [bg(%%ﬁ?)//z]. (B2)

The solid curve shown in Fig. 3 is the standard devia-
tion of log(W), which was observed during FIRE to
be about 0.39, as shown in Fig. 1. This can be found
from (B1) as std dev(log) = 5@ Note that a linear
rescaling such as (3.1) does not affect this result.

We now consider the moments of 7 itself. Since the
mean optical depth multiplies every pixel value, the
second moment will be proportional to the square of
the mean. We can find the proportionality constant by
setting 7, = 1. Then we can write the variance of 7 as

m=7r>-1=[[T1££)17~-1

k=0

=[Ia+rb-1, (B3
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where we have averaged over the random signs. Ex-
panding the products gives terms like

fo+fi+fi+fofi+rifs
34 FAIfR+ L

Substituting the bounded cascade expression, f, = fc",
terms like the first three form a geometric series, which
sums to

1-—c¢%

Similarly, all the bilinear terms form the sum

. fie?
4 2i 25
S L = Ty

where we changed summation variables to N = j — |
and employed the identity

N
S ¥ =
n=0

1 — xN+l
1-x ’

with x = ¢2. The following generalization of the geo-

metric series can be proven:

o ir—1 i—1 n n
Yoo X XxYi=]]b(x), (B4)
in=n i=1 ig=0 k=0 k=0
where
k
X
bi(x) = | e (BS)

Functions such as (B4) are of importance in number
theory where they arise in the theory of partitions of
integers, and were first considered by Euler. (See, for
example, Hardy and Wright 1979.) Using this result,
we find that m, can be written in terms of the quantities

fZCZk
ak(f21 Cz) = bek(CZ) = 1 . ;EE ’ (B6)
and takes the form
my, = ao + aga, + agaa, + ¢ -, (B7)

which can be computed as ao(1 + a,(1 + a,...)) [It
is also expressible as a continued fraction.]

Let us now consider the limit of m, as ¢ = 1. Using
the fact that (1 — ¢***?) = (1 — ¢®)(1 + ¢* + ¢*
+ --- + ¢?"), it is apparent that (1 — c**?) = (1
— ¢?)n, so that a, = a,/n. Substituting this into (B7),
we obtain

my = Gy €Xpdg.

Since a, has a simple pole at ¢ = 1, we see that m, has
an essential singularity at ¢ = 1. One implication of this
is that the power spectrum of the bounded model (¢
< 1) cannot be analytically continued to the ¢ = 1
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singular model. This is consistent with the different be-
havior of the spectral exponents found in appendix A.

The effect of the essential singularity on m, is illus-
trated by comparing Figs. Bla and B1b, which show
std dev(7) = \/;n_z for ¢ = 0.8 and ¢ = 0.97, respec-
tively, computed using (B7) with 5, 10, and 20 terms.
When ¢ = 0.8, a negligible contribution is made beyond
5 terms, so that the three curves are indistinguishable.
Also, the std dev never exceeds three times the mean,
even when f— 1. Contrast this with the behavior when
¢ = 0.97, when the terms beyond 5 make a large con-
tribution, and the sum converges especially slowly as
f— 1. Also, when f exceeds about 0.9, the std dev
exceeds 300 times the mean.

After a bit more algebra, one finds that the third cen-
tral moment can be expressed in terms of the a, in the
form

ms = 6ay(a, + 4a,a, + 13a,aa;

+ 4001020304 + - '). (B8)
The sequence of numerical coefficients in this series
satisfies C,, = C, + 3", with C, = 1, and they grow
very rapidly with n. The 20th, for example, is
1743 392 200. The effect of this rapid growth is illus-
trated by comparing Figs. B2a and B2b. These show
the skewness, namely, ms/m3’?, for ¢ = 0.8 and ¢
= 0.97, respectively, computed using (B7) and (B8)
with 5, 10, and 20 terms. When ¢ = 0.8, we find a
negligible contribution beyond five terms, and the
skewness never exceeds 6 even when f— 1. But when
¢ = 0.97, the skewness exceeds 6000 before f even
reaches 0.8, and the convergence is so slow that even
20 terms may be insufficient. Clearly, as ¢ approaches
unity, the skewness diverges even more dramatically
than the standard deviation.

APPENDIX C
Bounds on the Optical Depth

The optical depths in the bounded cascade model are
strictly bounded both above and below:
T min =T T max >

(C1)

where the extrema are found at two particular pixels,
one with

Tmax=nﬁ(1 + £

i=0

(C2)

and one with 7, of the same form with the replace-
ment (1 + £;) = (1 — £;) in every factor of the infinite
product. By our linear assumption given in (3.1), the
same bounds apply to the vertically integrated liquid
water. Since (1 + f;) < exp(f;), it is easy to derive a
simple upper bound for 7 or W:
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FiG. Bl. Standard deviation divided by the mean versus fractal
parameter f for the bounded model with (a) ¢ ~ 0.8 and k> spec-
trum and (b) ¢ = 0.97 and k"% spectrum, according to (A20). The
computation was based on Eq. (B7) with 5, 10, and 20 terms included
in the sum.

Tmax = Ty = Tuexp(z.fi) = Tvexp[f/(l - C)]

i=0

~ 71,exp(5f), (C3)

where we have used f; = fc’, summed the geometric
series, and set ¢ ~ 0.8, as required for a kK~ spectrum.
It is easy to show that

(Ca)

where 7 is the reduced effective optical thickness de-
fined in (4.2), with the reduction factor x defined by
(3.5). The upper bound on 7,,,, implies a lower bound
on 7, since the product is fixed:

— 2
TmaxTmin = 7 eff»

—_ 2
Tmin = T- = Teff/Ti--

(C5)
For a typical value of f = 0.5, we find 7, ~ 127,
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FiG. B2. Skewness versus fractal parameter f for the bounded
model with (a) ¢ = 0.8 and k™" spectrum and (b) ¢ = 0.97 and
k1% spectrum. The computation was based on Eq. (B8) w:th 5,10,
and 20 terms included in the sum.

and x- =~ 0.7, so that 7_ ~ 0.57,/12. Thus, the ratio 7/
T, must lie between 1/24 and 12.

APPENDIX D

Analytic Reflection Function for
Conservative Scattering

Here we introduce the analytic reflection function for
conservative scattering in plane-parallel clouds, given
by

8(0) + (1 — 6(8))e"1=®!

R(r,0)=1—
(7, 6) 1+ yr

, (D1)

where T is the cloud optical thickness, @ is the solar
zenith angle, and « and & are known functions of 6,
related to the backscatter fraction and the escape func-
tion, respectively, as given below. This function inter-
polates between the linear regime at small 7, where R
~ 7, and the known asymptotic behavior at large 7,
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described, for example, by King and Harshvardhan
(1986). Consider first the behavior in the thick cloud
limit. The exponential term in Eq. (D1) becomes neg-
ligible for sufficiently large 7, and the reflection func-
tion reduces to the asymptotic form given by King and
Harshvardhan [1986, their Eq. (16)] if we set

y = (1 — g)/1.428 ~ 0.11, (D2)

where g is the asymmetry parameter, here put equal to
0.843, a value based on the so-called fair weather cu-
mulus (FWC) phase function, appropriate for most wa-
ter clouds, and if we also set

5(8) =3 K(6)/1.428, (D3)
where K is the escape function for conservative scat-
tering. We find that the escape function for sun angles
more than 15° from the horizon (f < 75°) is well ap-
proximated by

K(8) = 0.43 + 0.86 cos#, (D4)

where we again assume the FWC phase function. At §
= 42° we have 6 = 1, and (D1) reduces to the two-
stream expression (3.8). At larger angles, § < 1. The
1/7 asymptotic behavior of the transmissivity, T = 1
— R, is typical of plane-parallel and other bounded
models; T decreases more slowly at large 7 for singular
fractal models (Lovejoy et al. 1990).

To determine «, we consider the thin cloud limit and
expand Eq. (D1) about 7 = 0. The constant term van-
ishes, as it should, and if the coefficient of the first-
order term is set equal to the backscatter fraction, 8(8),
the result can be solved to give

£
a(8) = (1 - 6(0»/(003((0))

For sun angles more than 15° from the horizon (8
< 75°) we find that the backscatter fraction is well
approximated by

B(6) = 037 — 0.32V[cos(8)(2 — cos(8))1, (D6)

for the FWC phase function.

At @ = 60°, which is typical of marine stratocumulus
observed during FIRE, the preceding equations give §
=~ 0.8, § =~ 0.093, and @ =~ 2.6.

- 'y) . (D5)
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